تبلیغات
انجمن علمی ریاضی بسیج دانشجویان دانشگاه یاسوج - هندسه‌ اقلیدسی
یکشنبه 17 اردیبهشت 1385
هندسه‌ اقلیدسی
هندسه‌ اقلیدسی همان هندسه‌یی است که در دوران دبیرستان آموخته‌ایم و شاید تصور می‌کنیم تنها هندسهٔ موجود است. این هندسه را نخستین بار اقلیدس در 300 سال قبل از میلاد در کتاب اصول خود تدوین کرد.

در حدود 300 سال قبل از میلاد دنیای هندسه در تب و تاب بود. نظرات مختلفی در زمینهٔ هندسه وجود داشت و سرانجام اقلیدس با انتشار کتاب اصول بنیادی را بنا نهاد که تا قرن‌ها منسجم‌ترین بنیادهای نظری بشر محسوب می‌شود. روش اقلیدس ساده بود او چند اصل موضوع و چند اصل متعارف را بدون اثبات به عنوان اصول بدیهی پذیرفت و سپس بر اساس آن صدها قضیه دیگر را اثبات کرد که بیشتر آن‌ها بسیار دور از ذهن بودند. اقلیدس شاگرد مکتب افلاطون بود. او در اصول سیزده جلدی خود تمام دانش بشری تا آن زمان گرد آورد و به مدت دو هزار سال مرجعی بی‌بدیل باقی ماند. روش بنداشتی (اصل موضوع) اقلیدس منجر به کاربرد الگویی شد که امروزه به آن ریاضیات محض می‌گوییم. محض از این نظر که با اندیشهٔ محض سر و کار دارد و از راه آزمون خطا و تجربه به دست نمی‌آید و درستی یا نادرستی احکام آن را نیز از راه تجربه نمی‌توان اثبات یا نفی کرد. برای استفاده از روش بنداشتی یا اصل موضوع دو شرط را باید پذیرفت:

  • شرط اول: پذیرفتن احکامی به نام بنداشت یا اصل موضوع که به هیچ توجیه دیگری نیاز نداشته باشند.
  • شرط دوم: توافق بر این‌که کی و چگونه حکمی "به طور منطقی" از حکم دیگر نتیجه می‌شود، یعنی توافق در برخی قواعد استدلال.

کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بی‌نیاز به توجیهی پذیرفتنی بودند دست‌چین کرد، و از آن‌ها 465 گزاره نتیجه گرفت. زیبایی کار اقلیدس در این است که این همه را از آن اندک نتیجه گرفت.

اصول موضوع اقلیدس

  1. از هر نقطه به هر نقطه دیگر می‌توان یک و فقط یک خط راست عبور داد.
  2. خط راست محدود را می‌توان تا به هر اندازه که بخواهیم ادامه دهیم.
  3. با هر مرکز می‌توان دایره‌ای به شعاع دل‌خواه رسم کرد.
  4. تمام زوایای قائمه با هم برابر اند. (اصل موضوع چهارم اقلیدس)
  5. اگر دو خط راست به وسیلهٔ یک خط سوم قطع شوند، در همان طرفی از خط سوم که زوایای داخلی، کوچک‌تر از دو قائمه تشکیل می‌دهند یک‌دیگر را قطع می‌کنند. (اصل توازی اقلیدس)

اصول متعارفی

  1. دو مقدار مساوی بامقدار سوم با هم مساوی اند.
  2. اگر به دو مقدار مساوی مقادیر مساوی اضافه کنیم، حاصل جمع‌ها با هم مساوی اند.
  3. اگر از دو مقدار مساوی مقادیر مساوی کم کنیم، باقیمانده‌ها با هم مساوی اند.
  4. دو چیز قابل انطباق با هم برابر اند.
  5. کل از جزء بزرگ‌تر است.

پس از اقلیدس

2100 سال پس از اقلیدس هندسهٔ او یگانه هندسهٔ موجود بود. با این وجود در طی این مدت طولانی ریاضی‌دان‌های زیادی کوشیدند اصل پنجم را از روی سایر اصل اثبات کنند که این کوشش‌ها سرانجام به نتیجهٔ دیگری منجر شد و در اوایل قرن نوزدهم هندسه‌های جدیدی به وجود آمد که هندسه‌های نااقلیدسی نامیده می‌شود. هندسه‌یی که تنها بر اساس چهار اصل اول اقلیدس ساخته می‌شود هندسه نتاری نامیده می‌شوند. دیوید هیلبرت در آخرین سال قرن نوزدهم (1899) کتاب "مبانی هندسه" خود را نوشت. هیلبرت در این کتاب صورت‌بندی دقیق‌تری از هندسهٔ اقلیدسی ارائه دارد.


[+] نوشته شده توسط مصطفی دلیرپور در ساعت 10:05 ق.ظ | موضوع: مطلب ریاضی , | نظر |